Steel screw settlement reduction piles for a raft foundation on soft soil

Alexei Murashev

Keywords: piled raft, settlement reduction pile, finite element analysis, numerical modelling, non-linear soil model, steel screw pile, helical pile

ABSTRACT

The new Gisborne Police Station building was built on a soft site occupied by a historical retail building. The façade of the historical building had to be retained, and the building demolished. Based on complex geotechnical investigations and consideration of various foundation options, Opus recommended that a piled raft foundation be adopted. For the first time steel screw piles were used as settlement reduction piles in soft soil. Due to the soft nature of soils, the piles were not capable of supporting the total building load, but took only a proportion of it, with the rest of the load being supported by the reinforced concrete raft. A full scale pile load test was undertaken on 12 m, 18 m and 24 m long screw piles. Finite element (FE) analysis was undertaken to assess the performance of a single screw pile and of the raft-pile-soil system. The FE analysis also allowed to assess settlement and the proportion of load taken by the piles and by the raft. Post construction settlement monitoring indicated that the actual settlement of the building was close to the predicted settlement. The innovative foundation design eliminated most of the construction risks, speeded up the construction and resulted in substantial ($1M) cost saving compared to other foundation options. The new police station building has been constructed and performed adequately under static load; it also survived the December 2007 Gisborne earthquake, which measured 6.8 on the Richter Scale, without any damage.

1 INTRODUCTION

A new Gisborne Police Station building had to be built at the site occupied by a historical retail building. The proposed building has two suspended concrete floors and concrete shear walls. The 40 m x 40 m footprint of the proposed Police Station building is larger than the footprint of the existing retail building. Under AS/NZS 1170 Australian / New Zealand Code for Structural Design Actions, Police Stations are classified as Importance Level 4 structures, the category of most important structures with special post-disaster functions. Importance Level 4 structures need to be designed for significantly greater loadings resulting from events such as earthquakes, wind, etc. The historical building, founded on small pad foundations demonstrated signs of damage due to large total and differential settlement and had to be demolished, but the Gisborne District Council required the old façade of the building to be retained.

2 SITE CONDITIONS

The site is located in the centre of Gisborne and was occupied by a historical retail building that had to be demolished, with its facade retained and supported by the new building structure. Therefore during investigations boreholes and cone penetration tests (CPT) were undertaken only around the perimeter of the retail building. Geotechnical investigations indicated that the site is formed by alluvial materials and the subsurface soil profile comprises:

- 3 m of very loose to medium dense sand and silty sand, overlying
- more than 25 m thickness of soft, insensitive to moderately sensitive silt. This layer extended to a depth below the end of our borehole and CPT tests.

The silt underlying the sands has an undrained shear strength ranging from 11 kPa at shallow
depth to 35 kPa in deeper layers. At the time of our site investigation, groundwater was encountered at a depth of between 2.2 m and 2.5 m below existing ground level. The site soils have a potential for large deformation and settlement. Differential settlement would be likely due to soft soil, and would further increase if the loads from the proposed building varied across the site, or part of the proposed building was built on the preloaded area of the site (i.e. the area preloaded by the historical retail building), with the other part founded on virgin ground.

3 FOUNDATION OPTIONS

The following foundation options were considered:

A) Shallow pad or raft foundation
Pad foundations were assessed to have unacceptably large settlements due to the soft nature of soils. A raft foundation was also assessed to have large settlement due to consolidation of the soft silt layer. As shallow foundations would sit on top of the sands, they would be susceptible to settlement due to densification of the sands under seismic shaking. Construction of shallow foundations is a simple and low cost process, without any risk mitigation measures for the existing façade and the adjoining buildings as the required excavation would be less than 0.3 m below the present ground level. However, due to large settlement associated with densification of sand and soft nature of the silt, this option was not feasible. There was also the risk of damage to adjoining buildings due to ground settlement beyond the footprint of the police station building.

B) Shallow concrete foundations on improved ground
A number of ground improvement options were considered. These included:
- stone columns installed by driving steel pipes with a sacrificial cone at the bottom,
- vibroflotation,
- dynamic compaction,
- deep soil mixing (cement or lime stabilisation),
- replacement of soft and liquefiable materials with better quality material, preloading of the site.

All of these ground improvement options are costly and some of them have the risk of causing settlement of the adjacent buildings/pavements due to vibration or static settlement effect.

C) Conventional pile foundation
Conventional pile foundation options were considered but discounted as piles founded in soft materials would not have sufficient bearing capacity to support the total load. Also there was no competent soil layer within 30 m depth to pile into.

D) Compensated cellular raft
The overall depth of the cellular raft would be about 2.6 m to 3m. The raft would provide a very stiff foundation which would distribute the building load uniformly and because of its hollow nature would reduce the load on the underlying soil to no more than the existing soil provided prior to construction (i.e. a compensated foundation). The cellular raft would be the most expensive option due to the need for construction dewatering, large excavation and concrete volumes and the temporary retention of the excavations being required. It is also the most risky option, as a deep excavation would be required right alongside the existing façade (which had to be retained), and could cause damage to the façade and to the adjoining building.

E) Reinforced concrete slab on the ground with conventional piles for settlement reduction
To reduce the raft foundation settlement, timber or concrete piles could be driven or bored into the soft silt beneath the raft. The piles would be designed as settlement piles (i.e. the piles would be loaded to substantially higher levels than conventional piles), and substantial part of the load would still be taken by the concrete raft. The settlement piles would share the building load with the raft and would distribute some load to the deeper soil layers mostly by friction, thus
reducing the expected settlement of the building. However, the settlement reduction would not be sufficient, as, with conventional driven or bored piles in soft materials, only a small proportion of load can be transferred to deeper layers. Also, durability of the timber piles was considered to be inadequate and reinforced concrete piles were too costly.

F) Reinforced concrete slab with screw piles for settlement reduction (preferred option)
This option is similar to Option E but would utilise steel screw piles on a regular grid screwed into the silts to a depth of 12m to 24 m depth. The tip of the pile has a large helix (900 mm diameter) and therefore can transfer a higher proportion of load to deeper layers compared to the conventional pile option. Settlements can be reduced compared with the previous options as most of the load will be transferred to a larger depth where the strength of silt is slightly higher compared to that of the near-surface silt layer. The construction risks for this option are low, as no excavation works would be required and no vibration would be generated. This option would have moderate cost and lowest settlement. Therefore, this option was adopted. However, the use of screw piles in soft materials or as settlement reduction piles is not common. The load-settlement behaviour of the screw piles loaded above commonly accepted load levels in soft material was uncertain. Therefore a full scale pile load test was recommended and undertaken.

4 BASEMENT OF THE EXISTING RETAIL BUILDING

A problem with all of the foundation options was the existing retail building basement which covered about 25% of the building area and was about 2.5m deep. As the basement was empty, the load on the soil there was lower than on the rest of the site. If the basement is backfilled before placing the new ground slab, additional stresses would be placed on the soil leading to more settlement. In the existing basement area light-weight polystyrene blocks and foamed concrete were used to reduce the backfill load and provide load transfer between the raft and the soil, and the reinforced concrete raft was built over the polystyrene.

5 SCREW PILES

A full scale load test was undertaken for 12 m, 18 m and 24 m long piles (Figure 1).

Figure 1: Full scale pile load test: A-Installation of a test screw pile, B-Pile testing

The standard testing procedure recommended by Australian piling code AS 2159 was not appropriate for our test, as the pile had to be loaded to loads higher than recommended in AS 2159, when yield zones around the helix become large, and it therefore takes a long time for creep to die out and for settlement to stabilise. Therefore the AS 2159 creep criteria was
amended and the test lasted 50 hours instead of 4 hours required by the standard procedure. Finite element analysis was undertaken prior to the pile test to assess the proportion of load taken by the screw pile (refer to Section 6). The pile test proved that the screw piles could not support the total load from the building, but would perform adequately if they are used as settlement reduction piles and take only a proportion of the total load. The screw piles comprising 18 m long circular hollow section steel shaft with 900 mm diameter single steel helix at the bottom were confirmed to have adequate performance if used as settlement piles.

6 FINITE ELEMENT MODELLING AND DETAILED DESIGN

The load on settlement piles cannot be calculated by conventional methods. Finite element modelling was undertaken to calibrate an initial non-linear soil model against the single pile load test data and to assess the behaviour of the raft-pile-soil system. The stress-strain soil behaviour was described by the elasto-plastic Mohr-Coloumb model with associated flow rule (Figure 2).

Figure 2: Elasto-plastic Mohr-Coloumb model: A-stress-strain diagram, B- flow rule, C– flow surface in the stress space.

Figure 3: A - Yield zone above and beneath helix (single pile); B – Contours of deviatoric strain (single pile)
Initially, the soil model was developed based on triaxial test data, but was then calibrated by comparison of the filed test data for a single pile with the results of finite element modelling for a single pile. The results of the finite element analysis for a single pile are shown on Figures 3A, 3B and 4A (only half of the pile is shown). Once the physical soil model was refined and produced results similar to the pile load test data, the finite element model was extended to include a segment of the reinforced concrete raft foundation, to allow the stress-strain state of the foundation system and the settlement of the raft-pile-soil system to be assessed. The results of the finite element modelling for the raft-pile-soil system are shown on Figure 4B.

The results of the finite element analysis indicated that the screw piles took about 60% of the total load with the rest of load being taken by the raft. The detail of the connection of a settlement screw pile to the 0.45 m thick raft is shown of Figure 5. The piled raft required 101
settlement screw piles at 3.4 m centres. While the predicted settlement behaviour of the proposed piled raft was adequate, the friction forces between the raft and the soil and shear resistance of the pile shafts were not sufficient to resist seismic shear. Therefore, a number of short bored piles were added to the foundation system to provide additional shear resistance. The bored piles had 0.9 m diameter and were 1.5 m deep.

7 CONSTRUCTION

Due to the simplicity of the proposed foundation system, 101 screw piles were built in 3 weeks at a rate of one pile every 20 minutes (Figure 6). Monitoring of the building settlement confirmed that the actual settlement to date (20 mm) was close to the total predicted settlement (40 mm). Construction of the building was completed just two days before M6.8 December 2007 Gisborne EQ struck. The new building survived the earthquake without any damage.

![Figure 6: A-Installation of production screw piles; B -Polystyrene blocks used instead of granular backfill in the existing basement area](image)

8 CONCLUSION

The new Gisborne Police Station building had to be built on a soft site formed by loose sands and soft silts and occupied by a historical retail building. Complex geotechnical investigations comprising trial pits, boreholes, cone penetration tests and laboratory testing were undertaken. Based on the results of the investigations, consideration of various foundation options was undertaken by Opus. A new foundation system comprising a reinforced concrete raft and steel screw settlement reduction piles has been developed using finite element analysis and adopted. Steel screw piles were used as settlement reduction piles in soft materials for the first time. The piles were not capable of supporting the total building load, but took only a proportion of it, with the rest of the load being supported by the reinforced concrete raft. Full scale pile load tests were undertaken to assess the behaviour of the screw piles in soft material. Post-construction monitoring indicated that the performance of the foundation system and the building under static and seismic loads was close to the predicted performance. The innovative foundation design approach eliminated construction risks, speeded up the construction and resulted in substantial cost saving compared to other foundation options.

9 ACKNOWLEDGEMENTS

The author wishes to thank the New Zealand Police for allowing the information contained within this paper to be published, and the RDT Pacific project manager Shatha Al-Sudani who was fully supportive of the extensive and thorough geotechnical investigation programme for the project. Piling & Drilling Services Limited and Piletech Limited are thanked for their assistance with the full scale pile load tests, manufacturing and installation of the piles.